
 
E-Learning study material for B.Sc/M.Sc Physics students by Dr. Ananda kumar V M, 

Associate Professor, Mahatma Gandhi college, Thiruvananthapuram, Kerala    2018 2018 
 

 

PROBABILITY CONCEPTS IN QUANTUM MECHANICS 

PROBABILITY WAVE AMPLITUDES 

We know that the new way of representing the world in quantum mechanics is              

to give amplitude for every event that can occur, and if the event involves the               

reception of one particle, then we can give the amplitude to find that one              

particle at different places at different times. The probability of finding the            

particle is then proportional to the absolute square of the amplitude. In general,             

the amplitude to find a particle in different places at different times varies with              

position and time. 

(http://www.feynmanlectures.caltech.edu/III_03.html) 

INTERFERENCE EXPERIMENT WITH ELECTRONS 

Watch the video- Double Slit Experiment 

(https://www.youtube.com/watch?v=DfPeprQ7oGc) 

The electron two-slit interference experiment shows the variation of the           

resultant intensity I, when both slits S1 and S2 are open and is characteristic of               

two-slit diffraction pattern, and it confirms that the electrons propagate in the            

form of waves. The electron wave divides itself into two parts at S1 and S2 and                

recombine at different positions on the screen with different values of phase            

differences giving rise to different amplitudes(intensities). Let us imagine this          

experiment is done with an electron beam such that only one electron is sent to               

the slit system at a time. The electron passes through the slit system, reaches the               
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screen and is detected by one of the detectors there, then the second electron is               

sent, and so on. When a large number of electrons have been sent, one plots the                

number of electrons detected by various detectors as a function of their position             

y. surprisingly, the pattern obtained is the same as that with an intense beam of               

electrons. This means that, in this experiment even a single electron was            

propagating in the form of a wave which encounters two slits, divides itself into              

two parts, recombines on the screen, and gets detected by one of the detectors as               

a whole single electron. This is all what is concluded from the experiment.             

Similar results have been obtained with Young’s double slit experiment. 

Therefore, irrespective of the intensity of the light beam, both the light and             

electron beams show wave nature when interacting with the two-slit          

arrangement. Moreover, the same light beam and electron beam show particle           

nature when experiments such as Photo electric effect or Compton effect are            

performed.  

Problem 1: Two coherent light sources of intensities I and 9I are used in an               

interference experiment. Find out resultant intensities at points where the waves           

from the two sources superpose with a phase difference of 

(a) 0    (b)    (c)    (d) π  3
π

2
π  

 

The resultant intensity at points where the waves from the two sources 

superpose with phase difference δ is 

 ,(δ) 2√I I cosδI = I1 + I2 +  1 2  
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Where  and  are the intensities of individual waves.I1 I2  

(a)  ,δ = 0  (0) I .9I  cos0 6I  I = I + 9 + 2√I = 1  

(b)     ,δ =  3
π  ( ) I .9I  cos 3II 3

π = I + 9 + 2√I 3
π = 1  

(c)     ,δ = 2
π  ( ) I .9I  cos 0II 2

π = I + 9 + 2√I 2
π = 1  

(d)  ,δ = π  (π) I .9I  cosπ I  I = I + 9 + 2√I = 4  

 

PROBABILITY IN QUANTUM MECHANICS 

Please watch the video(https://www.youtube.com/watch?v=wWZyLGEqgio) 

 

In classical mechanics, the configuration or state of a system is given by a point               

(x, p) in the space of coordinates and momenta. This specifies everything            

else in the system in a fully deterministic way, in that any observable Y              

that can be expressed as Y (x, p) can be found, and any that cannot is                

irrelevant. Yet, as we have seen with the diffraction of electrons, it is             

impossible to know both the position and momentum of the electron           

exactly at every point along the trajectory. This is mathematically          

expressed as the famous position-momentum uncertainty principle: 

 ΔxΔp ≥ ħ/2 (0.1)  

Hence, specifying a state by (x, p) clearly will not work. So what specifies the               

state of a quantum system?  

The configuration or state of a quantum object is completely specified by a             

wavefunction denoted as ψ(x).  

And what does ψ(x) mean?  
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p(x) = |ψ(x)| 2 determines the probability (density) that an object in the state              

ψ(x) will be found at position x.  

Note that,  

ψ ∈ C,  

meaning the wavefunction is complex! Here, the real part of ψ is being drawn              

for simplicity, as complex-plane paper is hard to find. Furthermore, ψ           

must be singly-valued and not “stupid”; the latter point will be elaborated            

later.  

 

 

 

 

Let us examine this set of examples in further detail. The first wavefunction ψ1              

is sharply peaked at a particular value of x, and the probability density,             

being its square, is likewise peaked there as well. This is the            

wavefunction for a particle well localized at a position given by the center             

of the peak, as the probability density is high there, and the width of the               

peak is small, so the uncertainty in the position is very small.  
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Examples of wavefunctions (red, left) and corresponding probability densities          

(blue, right)  

 

The second wavefunction ψ2 has the same peak profile, but shifted to a different              

position center. All of the properties of the first wavefunction hold here            
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too, so this simply describes a particle that is well-localized at that            

different position.  

 

The third and fourth wavefunctions ψ3 and ψ4 respectively look like sinusoids of             

different spatial periods. The wavefunctions are actually complex of the          

form 

 

 ψ(x) = Neikx,  

 

so only the real part is being plotted here. Note that even though the periods are                

different,  

 

|eikx| 2 = 1  

 

for all k, so the corresponding probability densities are the same except for             

maybe a normalization constant. We saw before that it does not make a             

whole lot of sense to think of a sinusoidal wave as being localized in              

some place. Indeed, the positions for these two wavefunctions are          

ill-defined, so they are not well-localized, and the uncertainty in the           

position is large in each case.  

 

The fifth wavefunction is multiply-valued, so it is considered to be “stupid”. It              

does not have a well-defined probability density. 

Note the normalization and dimensions of the wavefunction: the cumulative           

probability over all possible positions is unity, so  
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|ψ(x)| dx 1 ∫
 

 
 2 =   

 

and the probability density has dimensions reciprocal to the integration variable            

that yields a cumulative probability which in this case is position, so the             

wave function has units of reciprocal square root of length. Finally, note            

that while the wave function is in general complex, the probability           

(density) must always be real. This also means that ψ(x) is only uniquely             

defined up to an arbitrary complex phase, because all imaginary          

exponentials eiθ satisfy |eiθ| 2 = 1, so the probability density and therefore             

the physical interpretation of the wave function are unaffected by          

multiplication by a complex phase.  

 

You may now be thinking that the only useful wave functions are peaks that are               

well-localized around a given position. But let us remember that the de            

Broglie relations says that a wave of wavelength λ has a momentum p =              

hλ−1. This means that ψ3 and ψ4, being sinusoidal waves, have           

well-defined wavelengths and therefore well-defined momenta with small        

uncertainties in their respective momenta, with ψ4 having a smaller          

wavelength and therefore a larger momentum than ψ3.  

 

On the other hand, ψ1 and ψ2 do not look like sinusoidal waves, so it is difficult                 

to define a wavelength and therefore a momentum for each, and the            
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respective momentum uncertainties are large. These qualitatively satisfy        

the uncertainty relation.  

In general, given a wave function, once the uncertainty in the position is             

determined, a lower bound for the uncertainty in the momentum can be            

found by the uncertainty relation. This always works. If Δx is large, then             

Δp is small, and the opposite is true as well. At some point, we will have                

to figure out how to calculate these uncertainties. But there are two things             

to be done before that.  

 

The first is a point of notation. A plane wave 

 

 ψ(x,t) = e i(kx−ωt)  

 

has frequency  

ω = 2πν  

and wave vector 

 k = 2πλ−1  

 

This means that the de Broglie relations can be rewritten as 

 E = ħω (0.2)  

p =ħ k (0.3)  

 

In three dimensions, the energy relation is unchanged, while the momentum            

relation p =ħ k simply takes on the form of a vector relation.  
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The second is much more important, and that is to quantify the notion of              

superposition that we have been developing. 

Given two possible states of a quantum system corresponding to two           

wavefunctions ψa and ψb, the system could also be in a superposition            

ψ = αψa + βψb with α and β as arbitrary complex coefficients             

satisfying normalization. 

 

This forms the soul of quantum mechanics!  

 

Note that for a superposition state  

ψ(x) = αψa(x) + βψb(x),  

 

the probability density  

p(x) = |αψa(x) + βψb(x)| 2 = |αψa(x)| 2 + |βψb(x)| 2 + α* βψa*(x)ψb(x) + αβ* 

ψa(x)ψb* (x) 

 exhibits quantum interference aside from the usual addition of probability!  

 

For example, let us consider ψ5 = ψ1 + ψ2 from our previous set of examples.                

Putting normalization aside, this looks like two distinct well-localized         

peaks. Each peak individually represented a particle that was localized at           

the position of the peak centre. But now that there are two peaks, the              

particle is at neither position individual. It is not at both positions            

simultaneously, nor is it at no position at all. It is simply in a              

superposition of two states of definite position. The probability density of           

this superposition state will show no interference because when one of the            
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component wave functions exhibits a peak, the other component wave          

function is zero, so their product is zero at all positions.  

 

Similarly, ψ6 = ψ3 + ψ4 is a superposition of two states of definite momentum. It                

cannot be said that a particle in this state has one or the other momentum,               

nor can it be said that it has both or neither momenta. In contrast to the                

previous superposition example, though, the probability density will        

exhibit interference because the product of the two wave functions is not            

always zero as they are both sinusoidal waves.  

 

Note for the example of ψ5 that this superposition state has more spatial             

localization than each of the component sinusoidal wave functions. This          

spatial localization could be made even better with three states of           

different definite momenta. We could do this for arbitrarily large          

countable n: as a state of definite momentum is 

 ψ(x; k) = eikx 

 

  except for normalization, a superposition of states of definite momentum  

 

ψ =   e∑
 

j
αj

ikj x  

 

could have a very well-localized position center. Or, other states with different            

properties compared to just having a well-localized position could be          

built from superpositions of momentum states. But why should we stop           
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there? There is no reason to consider only discrete kj , when the entire              

range of k over the real line is available.  

 

 

The Fourier theorem says that any function f(x) can be composed of eikx             

complex sinusoidal waves as  

    f(x) =    1
√2π (k)e  dk∫

∞

−∞
f ikx (0.4) 

           This is the continuous analogue of the discrete sum Fourier series 

f(x)  =   e∑
 

j
αj

ikj x  (0.5) 

Furthermore, given f(x), we can compute the Fourier transform  

  f(k) =    1
√2π (x)e  dx∫

∞

−∞
f −ikx  (0.6) 

 

This is the continuous analogue of the Fourier expansion coefficients  

   dxαj = 1
2π (x)e∫

π

−π
f −ikj x  (0.7)  

 

The physical interpretation of this is that any wavefunction ψ(x) can be            

expressed as a superposition of states eikx with definite momenta p =            

k as  
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ψ(x) =    1
√2π (k)e  dk∫

∞

−∞
ψ ikx  (0.8) 

Furthermore, ψ(k) gives the exact same information as ψ(x) about the           

quantum state, so once one is known, the other can be found            

automatically as well.  

 

What do the Fourier transforms of wave functions look like? Let us look at the               

previous set of examples. ψ1 looks like a Dirac delta function, and its             

Fourier transform is a complex exponential . . . except that is exactly what              

ψ3 looks like as a function of x! Similarly, ψ2 has a larger position than               

ψ1, so its Fourier transform has a larger frequency as a complex            

exponential function of k. Furthermore, performing the Fourier transform         

on a function twice simply recovers the original function. This implies           

that the Fourier transform of ψ3 looks like ψ1 as a function of k, and the                

same goes for ψ4 with regard to ψ2. Finally, in a similar vein, aside from               

normalization, ψ5 and ψ6 are Fourier transforms of each other.  

 

This means that a wave function that is well-localized around a given position             

has a Fourier transform that looks like a sinusoidal function of k, and the              

frequency of oscillation as a function of k is given by that position.             

Similarly, a wave function that looks like a sinusoidal function of x has a              

Fourier transform that is well-localized around a given wave vector, and           

that wave vector is the frequency of oscillation as a function of x.  
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So what then is p(k)? This is the probability density that the particle described              

by the wave function ψ(x) has a momentum p = k. The expression turns              

out to be surprisingly simple: 

 

 p(k) = |ψ(k)| 2 ,  

and it is not too difficult to show this to be the case. 
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